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The non-rigid molecule group theory in which the dynamical symmetry operations are defined as physical operations 
is applied to determine the character table for the full non-rigid molecule group (f-NRG) of tetramethylethylene. 
We show that the f-NRG of this molecule is a group of order 324, the structure of which is formed as the wreath 
product Z3∿(Z2×Z2), in which Z3 is the cyclic group of order 3 and Z2 denotes the cyclic group of order two. Using 
the group theory package GAP, we calculate the conjugacy classes and character table of this molecule.
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A molecule is said to be non-rigid if there are 
several local minima on the potential-energy surface 
easily attainable by the molecular system via a tunnelling 
rearrangement. A non-rigid molecule, which possesses 
various isoenergetic forms separated by relatively low 
energy barriers, presents large amplitude movements 
between various possible configurations. Because of 
this deformability, the non-rigid molecules exhibit 
some interesting properties of intramolecular dynamics, 
which can be studied more easily resorting to Group 
Theory.

Following Y. G. Smeyers,1–2 the complete set of 
the molecular conversion operations which commute 
with the nuclear motion operator will contain overall 
rotation operations describing the molecule rotating 
as a whole, and internal motion operations describing 
molecular moieties moving with respect to the rest of 
the molecule. Such a set forms a group which called the 
Full Non-Rigid Molecule Group (f-NRG).

Finite group theory is the mathematics of 
symmetry. It plays an important role in the study of 
molecules, crystals, and clusters in chemistry although 
applications have usually been restricted to small 
or moderately sized systems due to computational 
limitations. To be practical for large systems, finite 
group theory requires both computer calculation and 
the advanced computational methods.

Group theory for non-rigid molecules is more 
relevant to large amplitude vibrational spectroscopy 
of small organic molecules and its applications have 
appeared in the literature.3–10

Introduction The various vibrational modes of a molecule can 
be categorized in terms of their behaviour with respect 
to the symmetry elements of the molecule. In fact, any 
motion of the molecule including translations, rotations, 
and vibrations, can be categorized on this basis. The 
categories to which these motions are assigned are 
called irreducible representations. Thus it is important 
to calculate the irreducible representations and so 
character table of the symmetry group of a molecule.

The symmetry groups of non-rigid molecules, 
where changes from one conformation to another can 
occur easily, were investigated by Longuet-Higgins.11 In 
many cases, these symmetry groups are not isomorphic 
to any of the familiar symmetry groups of rigid 
molecules and their character tables are not known. It 
is therefore of some interest and importance to develop 
simple methods of calculating these character tables, 
which are needed for classification of wave functions, 
determination of selection rules and so on. 

The method as described here is appropriate for 
molecules which consist of a number of XH3 or XO2 
groups attached to a rigid framework. An example of 
these kinds of molecules is tetramethylethylene, which 
is considered here in some detail. It is not appropriate 
in cases where the framework is linear, as in ethane, but 
Bunker12 has shown how to deal with such molecules. 

Our approach here is first to specify the algebraic 
structure of the f-NRG of tetramethylethylene. With 
a geometric consideration of dynamic symmetries 
of the molecule we will show that the f-NRG of 
tetramethylethylene can be specified by wreath product 
of some known groups. Then based on the structure 
of the group we apply GAP,13 a useful package for 
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computing the character tables and even the group 
structure, to compute the character table of the f-NRG 
of tetramethylethylene. 

Balasubramanian14–19 was the first chemist who 
calculated the non-rigid group of molecules using 
wreath product formalism. He also computed the 
character table of non-rigid groups under consideration, 
using a well-known method for computing the character 
table of groups which is representable as a wreath 
product of two groups.

We use reference20 for the standard notation and 
terminology of character theory. The motivation for 
this study is outlined in references21–25 and the reader 
is encouraged to consult these papers for background 
material as well as basic computational techniques.

In this paper, the f-NRG of tetramethylethylene, 
Figure 1, is investigated. We prove that this group has 
order 324 with 45 conjugacy classes and 45 irreducible 
characters. Computations were carried out with the 
aid of GAP and this was done by characterizing the 
algebraic structure of f-NRG as the wreath product of 
known groups. 

Results and discussion
In this section we first describe some notation 

which will be kept throughout. Let G be a group and 
N be a subgroup of G. N is called a normal subgroup 
of G, if for any g∈G and x∈N, g–1xg∈N. Moreover, if 
H is another subgroup of G such that H∩N = {e} and 
G = HN = {xy | x∈H, y∈N}, then we say that G is a 
semidirect product of H by N denoted by H∧N. Suppose 
X is a set. The set of all permutations on X, denoted 
by SX, is a group which is called the symmetric group 
on X. In the case that, X = {1, 2,…, n}, we denote SX 
by Sn or Sym(n). 

Let H be a permutation group on X, a subgroup 
of SX, and let G be a group. The set of all mappings X 
→ G is denoted by GX, i.e. GX = {f | f: X → G}. It is 
clear that |GX| = |G||X|. We put G∿H = GX × H = 
{(f; π) | f ∈ GX, π ∈ H}. For f ∈ GX and π ∈ H, we 
define fπ ∈ GX by fπ = foπ–1, where “o” denotes the 
composition of functions. It is easy to check that the 
following law of composition: (f ; π) (f′; π′) = (ff′π ; π 
π′), makes G∿H into a group. This group is called the 
wreath product of G by H.

Before going into the details of the computations 
of tetramethylethylene we should mention that we 
consider the speed of rotations of methyl groups 
sufficiently high so that the mean time dynamical 
symmetry of the molecules makes sense. In order to 
characterize the f-NRG of tetramethylethylene we first 
note that each dynamic symmetry operation of this 
molecule, considering the rotations of CH3 groups, is 
composed of two sequential physical operations. First 

we have a physical symmetry of the tetramethylethylene 
consist of six carbon atoms which are denoted by 
a,b,1,2,3 and 4 in Figure 1. Such operations are exactly 
the symmetries of the rectangular framework {1,2,3,4} 
which form the Klein’s four group V={Id, (1,2)(4,3), 
(1,4)(2,3), (1,3)(2,4)}. In fact under the vertical 
reflection of the frame work the two middle carbons 
are interchanged and hence we should have inserted 
(1,2) (4,3) (a,b) in V, and in this case we have V = {Id, 
(1,2)(4,3)(a,b), (1,4)(2,3), (1,3)(2,4)(a,b)}. Since a and 
b do not have any effect on our calculations, therefore 
we omitted the permutation (a,b).

After accomplishing the first framework symmetry 
operations we must map each CH3 group on itself. Since 
one half of the rotations on each CH3 group is possible, 
therefore the feasible symmetry group of each CH3 is the 
cyclic group of order 3, namely Z3. Referring to Figure 
1, the group of each CH3 at the four corners of the 
framework is given in terms of permutations as follows:

Figure 1. The Structure of Tetramethylethylene.

G1 = < (5,6,7) >,

G2 = < (8,9,10) >, 

G3 = < (11,12,13) >, 

G4 = < (14,15,16) >. 

where Gi is the symmetry group of the CH3 whose 
carbon atom is marked as i, 1≤ i ≤ 4. 

There fore  the  fu l l  s ymmetry  g roup  o f 
tetramethylethylene has the following structure: 

G = ( G1× G2 × G3 × G4 ) : V 

where “:” denotes the semi-direct product. Therefore we 
can identify every element of G as a vector (a1,a2,a3,a4,v) 
such that ai ∈ Gi and v ∈ V. Evidently G can be written 
in terms of wreath product G = Z3∿(Z2×Z2). We now 
apply GAP to obtain the conjugacy classes and character 
table of the group G, as in Tables 1 and 2. In Table 2, for 
every entry X, /X denotes the complex conjugate of X 
and A = eiπ/3, B = –3A–2A2, C = –A + 2A2, D = A + 
3A2, E = 2A2 and F = 4A, where i=√–1.
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The method described in this paper appears 
to be more efficient in dealing with the construction 
of the character table of the symmetry group of the 
molecule. The structure of the group of full symmetries 
of a non-rigid molecule, which is denoted by f-NRG, 
is determined by examining various concepts and 
constructions in group theory. First, all the permutations 
and inversions which don’t change the whole framework 
of the molecule should be examined. Then using the 
GAP package the character table of the f-NRG group 
is computed. The symmetry group of the non-rigid 
tetramethylethylene molecule which exhibits internal 
rotations of the CH3 groups is shown to be the wreath 
product Z3∿(Z2×Z2) which contains 324 permutations. 
This groups falls into  45 conjugacy classes of elements, 
hence by a famous result in representation theory, the 
group contains exactly 45 irreducible characters. In 

Conclusions

Table 1. Representatives and the sizes of the conjugacy classes of G.

Table 1, a representative from each conjugacy class  is 
given and in the column facing it the centralizer size of 
a representative g is given. Therefore the totality of all 
elements in a conjugacy class containing g is |G| / |CG 

(g)| where CG (g) denotes the centralizer of g in the 
group G, i.e. the set of all elements of G which commute 
with g. In Table 2, where the complete character table 
is presented, the first row consists of representatives of 
each conjugacy class, but this time in the GAP notation 
a representative g is shown by the order of the element 
g. For example if an element g has order n, then its class 
is denoted by nx, where x runs over the letters a, b, etc. 
to denote the consecutive classes of elements of order 
n. If g belongs to the class nx and if m is 2,3 or 5, then gm 
belongs to a class of elements of order n/(n,m), where 
(n,m) denotes the greatest common divisor of n and 
m, which are given in a column above nx. The values 
of the irreducible characters χi, 1≤ i ≤ 45, at each class 
occupies the rest of Table 2.

No. Representatives Size  No. Representatives Size 

1) () 1  24) (1,2,3)(4,6,5)(7,8,9)(10,12,11) 2 

2) (10,11,12) 4  25) (1,2,3)(4,6,5)(7,9,8)(10,11,12) 2 

3) (10,12,11) 4  26) (1,2,3)(4,6,5)(7,9,8)(10,12,11) 4 

4) (7,8,9)(10,11,12) 2  27) (1,3,2)(4,6,5)(7,9,8)(10,12,11) 1 

5) (7,8,9)(10,12,11) 4  28) (1,4)(2,5)(3,6)(7,10)(8,11)(9,12) 9 

6) (7,9,8)(10,12,11) 2  29) (1,4)(2,5)(3,6)(7,10,8,11,9,12) 18 

7) (4,5,6)(10,11,12) 2  30) (1,4)(2,5)(3,6)(7,10,9,12,8,11) 18 

8) (4,5,6)(10,12,11) 4  31) (1,4,2,5,3,6)(7,10,8,11,9,12) 9 

9) (4,5,6)(7,8,9) 2  32) (1,4,2,5,3,6)(7,10,9,12,8,11) 18 

10) (4,5,6)(7,8,9)(10,11,12) 4  33) (1,4,3,6,2,5)(7,10,9,12,8,11) 9 

11) (4,5,6)(7,8,9)(10,12,11) 4  34) (1,7)(2,8)(3,9)(4,10)(5,11)(6,12) 9 

12) (4,5,6)(7,9,8) 4  35) (1,7)(2,8)(3,9)(4,10,5,11,6,12) 18 

13) (4,5,6)(7,9,8)(10,11,12) 4  36) (1,7)(2,8)(3,9)(4,10,6,12,5,11) 18 

14) (4,5,6)(7,9,8)(10,12,11) 4  37) (1,7,2,8,3,9)(4,10,5,11,6,12) 9 

15) (4,6,5)(10,12,11) 2  38) (1,7,2,8,3,9)(4,10,6,12,5,11) 18 

16) (4,6,5)(7,8,9)(10,11,12) 4  39) (1,7,3,9,2,8)(4,10,6,12,5,11) 9 

17) (4,6,5)(7,8,9)(10,12,11) 4  40) (1,10)(2,11)(3,12)(4,7)(5,8)(6,9) 9 

18) (4,6,5)(7,9,8) 2  41) (1,10,2,11,3,12)(4,7)(5,8)(6,9) 18 

19) (4,6,5)(7,9,8)(10,11,12) 4  42) (1,10,3,12,2,11)(4,7)(5,8)(6,9) 18 

20) (4,6,5)(7,9,8)(10,12,11) 4  43) (1,10,2,11,3,12)(4,7,5,8,6,9) 9 

21) (1,2,3)(4,5,6)(7,8,9)(10,11,12) 1  44) (1,10,3,12,2,11)(4,7,5,8,6,9) 18 

22) (1,2,3)(4,5,6)(7,8,9)(10,12,11) 4  45) (1,10,3,12,2,11)(4,7,6,9,5,8) 9 

23) (1,2,3)(4,5,6)(7,9,8)(10,12,11) 2     
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Table 2. Character table of the group G and its power map.

  1a 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 3k 3l 3m 3n 3o 3p 3q 3r 
 2p 1a 3b 3a 3e 3d 3c 3n 3g 3q 3s 3r 3k 3p 3o 3f 3m 3l 3h 3j 
 3p 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 1a 
 5p 1a 3b 3a 3e 3d 3c 3n 3g 3q 3s 3r 3k 3p 3o 3f 3m 3l 3h 3j 

χ1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
χ2  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
χ3  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
χ4  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
χ5  1 A /A /A 1 A /A 1 /A 1 A 1 A /A A A /A A /A 
χ6  1 A /A /A 1 A /A 1 /A 1 A 1 A /A A A /A A /A 
χ7  1 A /A /A 1 A /A 1 /A 1 A 1 A /A A A /A A /A 
χ8  1 A /A /A 1 A /A 1 /A 1 A 1 A /A A A /A A /A 
χ9  1 /A A A 1 /A A 1 A 1 /A 1 /A A /A /A A /A A 
χ10  1 /A A A 1 /A A 1 A 1 /A 1 /A A /A /A A /A A 
χ11  1 /A A A 1 /A A 1 A 1 /A 1 /A A /A /A A /A A 
χ12  1 /A A A 1 /A A 1 A 1 /A 1 /A A /A /A A /A A 
χ13  2 -1 -1 2 -1 2 2 -1 -1 -1 2 2 -1 -1 2 -1 -1 -1 2 
χ14  2 -1 -1 2 -1 2 2 -1 -1 -1 2 2 -1 -1 2 -1 -1 -1 2 
χ15  2 -1 -1 -1 2 -1 2 -1 2 -1 -1 -1 -1 2 2 2 -1 2 -1 
χ16  2 -1 -1 -1 2 -1 2 -1 2 -1 -1 -1 -1 2 2 2 -1 2 -1 
χ17  2 -1 -1 2 -1 2 -1 2 2 -1 -1 -1 2 -1 -1 -1 2 2 -1 
χ18  2 -1 -1 2 -1 2 -1 2 2 -1 -1 -1 2 -1 -1 -1 2 2 -1 
χ19  2 -A -/A E -1 /E E -1 -/A -1 /E 2 -A -/A /E -A -/A -A E 
χ20  2 -A -/A E -1 /E E -1 -/A -1 /E 2 -A -/A /E -A -/A -A E 
χ21  2 -/A -A /E -1 E /E -1 -A -1 E 2 -/A -A E -/A -A -/A /E 
χ22  2 -/A -A /E -1 E /E -1 -A -1 E 2 -/A -A E -/A -A -/A /E 
χ23  2 -A -/A -/A 2 -A E -1 E -1 -A -1 -A E /E /E -/A /E -/A
χ24  2 -A -/A -/A 2 -A E -1 E -1 -A -1 -A E /E /E -/A /E -/A
χ25  2 -A -/A E -1 /E -/A 2 E -1 -A -1 /E -/A -A -A E /E -/A
χ26  2 -A -/A E -1 /E -/A 2 E -1 -A -1 /E -/A -A -A E /E -/A
χ27  2 -/A -A -A 2 -/A /E -1 /E -1 -/A -1 -/A /E E E -A E -A 
χ28  2 -/A -A -A 2 -/A /E -1 /E -1 -/A -1 -/A /E E E -A E -A 
χ29  2 -/A -A /E -1 E -A 2 /E -1 -/A -1 E -A -/A -/A /E E -A 
χ30  2 -/A -A /E -1 E -A 2 /E -1 -/A -1 E -A -/A -/A /E E -A 
χ31  4 1 1 -2 -2 -2 4 1 -2 1 -2 -2 1 -2 4 -2 1 -2 -2 
χ32  4 1 1 -2 -2 -2 -2 -2 4 1 1 1 -2 -2 -2 -2 -2 4 1 
χ33  4 1 1 4 1 4 -2 -2 -2 1 -2 -2 -2 1 -2 1 -2 -2 -2 
χ34  4 A /A -E -2 -/E /F 1 -E 1 -/E -2 A -E F -/E /A -/E -E 
χ35  4 /A A -/E -2 -E F 1 -/E 1 -E -2 /A -/E /F E A -E -/E
χ36  4 /A A -/E -2 -E -/E -2 F 1 /A 1 -E -/E -E E -/E /F A 
χ37  4 A /A -E -2 -/E -E -2 /F 1 A 1 -/E -E -/E -/E -E F /A 
χ38  4 /A A F 1 /F -/E -2 -/E 1 -E -2 -E A -E /A -/E -E -/E
χ39  4 A /A /F 1 F -E -2 -E 1 -/E -2 -/E /A -/E A -E -/E -E 
χ40  4 B /B -/E 1 -E -/E 1 -/E C /A 1 /A A -E /A A -E A 
χ41  4 /B B -E 1 -/E -E 1 -E /C A 1 A /A -/E A /A -/E /A 
χ42  4 C /C -2 1 -2 -2 1 -2 /C 1 1 1 1 -2 1 1 -2 1 
χ43  4 D /D -E 1 -/E -E 1 -E C A 1 A /A -/E A /A -/E /A 
χ44  4 /C C -2 1 -2 -2 1 -2 C 1 1 1 1 -2 1 1 -2 1 
χ45  4 /D D -/E 1 -E -/E 1 -/E /C /A 1 /A A -E /A A -E A 



286 Acta Chim. Slov. 2005, 52, 282–287

Darafsheh et al.     Group Theory for Tetramethylethylene

Table 2(Continued).

  3s 3t 3u 3v 3w 3x 3y 3z 2a 6a 6b 6c 6d 6e 2b 6f 6g 6h 6i 6j 
 2p 3i 3z 3y 3v 3w 3x 3u 3t 1a 3c 3e 3t 3v 3z 1a 3f 3n 3t 3w 3z 
 3p 1a 1a 1a 1a 1a 1a 1a 1a 2a 2a 2a 2a 2a 2a 2b 2b 2b 2b 2b 2b 
 5p 3i 3z 3y 3v 3w 3x 3u 3t 2a 6b 6a 6e 6d 6c 2b 6g 6f 6j 6i 6h 

χ1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
χ2  1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
χ3  1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 
χ4  1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 
χ5  1 A /A 1 1 1 A /A 1 A /A /A 1 A 1 A /A /A 1 A 
χ6  1 A /A 1 1 1 A /A -1 -A -/A -/A -1 -A -1 -A -/A -/A -1 -A 
χ7  1 A /A 1 1 1 A /A 1 A /A /A 1 A -1 -A -/A -/A -1 -A 
χ8  1 A /A 1 1 1 A /A -1 -A -/A -/A -1 -A 1 A /A /A 1 A 
χ9  1 /A A 1 1 1 /A A 1 /A A A 1 /A 1 /A A A 1 /A 
χ10  1 /A A 1 1 1 /A A -1 -/A -A -A -1 -/A -1 -/A -A -A -1 -/A
χ11  1 /A A 1 1 1 /A A 1 /A A A 1 /A -1 -/A -A -A -1 -/A
χ12  1 /A A 1 1 1 /A A -1 -/A -A -A -1 -/A 1 A A A 1 /A 
χ13  -1 2 -1 2 2 -1 -1 2 0 0 0 0 0 0 0 0 0 0 0 0 
χ14  -1 2 -1 2 2 -1 -1 2 0 0 0 0 0 0 0 0 0 0 0 0 
χ15  -1 2 -1 -1 2 2 -1 2 -2 1 1 -2 1 -2 0 0 0 0 0 0 
χ16  -1 2 -1 -1 2 2 -1 2 2 -1 -1 2 -1 2 0 0 0 0 0 0 
χ17  -1 2 -1 2 -1 2 -1 2 0 0 0 0 0 0 -2 1 1 -2 1 -2 
χ18  -1 2 -1 2 -1 2 -1 2 0 0 0 0 0 0 2 -1 -1 2 -1 2 
χ19  -1 /E -/A 2 2 -1 -A E 0 0 0 0 0 0 0 0 0 0 0 0 
χ20  -1 /E -/A 2 2 -1 -A E 0 0 0 0 0 0 0 0 0 0 0 0 
χ21  -1 E -A 2 2 -1 -/A /E 0 0 0 0 0 0 0 0 0 0 0 0 
χ22  -1 E -A 2 2 -1 -/A /E 0 0 0 0 0 0 0 0 0 0 0 0 
χ23  -1 /E -/A -1 2 2 -A E -2 A /A -E 1 -/E 0 0 0 0 0 0 
χ24  -1 /E -/A -1 2 2 -A E 2 -A -/A E -1 /E 0 0 0 0 0 0 
χ25  -1 /E -/A 2 -1 2 -A E 0 0 0 0 0 0 -2 A /A -E 1 -/E
χ26  -1 /E -/A 2 -1 2 -A E 0 0 0 0 0 0 2 -A -/A E -1 /E 
χ27  -1 E -A -1 2 2 -/A /E -2 /A A -/E 1 -E 0 0 0 0 0 0 
χ28  -1 E -A -1 2 2 -/A /E 2 -/A -A /E -1 E 0 0 0 0 0 0 
χ29  -1 E -A 2 -1 2 -/A /E 0 0 0 0 0 0 -2 /A A -/E 1 -E 
χ30  -1 E -A 2 -1 2 -/A /E 0 0 0 0 0 0 2 -/A -A /E -1 E 
χ31  1 4 1 -2 4 -2 1 4 0 0 0 0 0 0 0 0 0 0 0 0 
χ32  1 4 1 -2 -2 4 1 4 0 0 0 0 0 0 0 0 0 0 0 0 
χ33  1 4 1 4 -2 -2 1 4 0 0 0 0 0 0 0 0 0 0 0 0 
χ34  1 F /A -2 4 -2 A /F 0 0 0 0 0 0 0 0 0 0 0 0 
χ35  1 /F A -2 4 -2 /A F 0 0 0 0 0 0 0 0 0 0 0 0 
χ36  1 /F A -2 -2 4 /A F 0 0 0 0 0 0 0 0 0 0 0 0 
χ37  1 F /A -2 -2 4 A /F 0 0 0 0 0 0 0 0 0 0 0 0 
χ38  1 /F A 4 -2 -2 /A F 0 0 0 0 0 0 0 0 0 0 0 0 
χ39  1 F /A 4 -2 -2 A /F 0 0 0 0 0 0 0 0 0 0 0 0 
χ40  /C /F D -2 -2 -2 /D F 0 0 0 0 0 0 0 0 0 0 0 0 
χ41  C F /D -2 -2 -2 D /F 0 0 0 0 0 0 0 0 0 0 0 0 
χ42  C 4 C -2 -2 -2 /C 4 0 0 0 0 0 0 0 0 0 0 0 0 
χ43  /C F B -2 -2 -2 /B /F 0 0 0 0 0 0 0 0 0 0 0 0 
χ44  /C 4 /C -2 -2 -2 C 4 0 0 0 0 0 0 0 0 0 0 0 0 
χ45  C /F /B -2 -2 -2 B F 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 2(Continued). References
  2c 6k 6l 6m 6n 6o 
 2p 1a 3h 3q 3t 3x 3z 
 3p 2c 2c 2c 2c 2c 2c 
 5p 2c 6l 6k 6o 6n 6m 

χ1  1 1 1 1 1 1 
χ2  1 1 1 1 1 1 
χ3  -1 -1 -1 -1 -1 -1 
χ4  -1 -1 -1 -1 -1 -1 
χ5  1 A /A /A 1 A 
χ6  1 A /A /A 1 A 
χ7  -1 -A -/A -/A -1 -A 
χ8  -1 -A -/A -/A -1 -A 
χ9  1 /A A A 1 /A 
χ10  1 /A A A 1 /A 
χ11  -1 -/A -A -A -1 -/A 
χ12  -1 -/A -A -A -1 -/A 
χ13  -2 1 1 -2 1 -2 
χ14  2 -1 -1 2 -1 2 
χ15  0 0 0 0 0 0 
χ16  0 0 0 0 0 0 
χ17  0 0 0 0 0 0 
χ18  0 0 0 0 0 0 
χ19  -2 A /A -E 1 -/E 
χ20  2 -A -/A E -1 /E 
χ21  -2 /A A -/E 1 -E 
χ22  2 -/A -A /E -1 E 
χ23  0 0 0 0 0 0 
χ24  0 0 0 0 0 0 
χ25  0 0 0 0 0 0 
χ26  0 0 0 0 0 0 
χ27  0 0 0 0 0 0 
χ28  0 0 0 0 0 0 
χ29  0 0 0 0 0 0 
χ30  0 0 0 0 0 0 
χ31  0 0 0 0 0 0 
χ32  0 0 0 0 0 0 
χ33  0 0 0 0 0 0 
χ34  0 0 0 0 0 0 
χ35  0 0 0 0 0 0 
χ36  0 0 0 0 0 0 
χ37  0 0 0 0 0 0 
χ38  0 0 0 0 0 0 
χ39  0 0 0 0 0 0 
χ40  0 0 0 0 0 0 
χ41  0 0 0 0 0 0 
χ42  0 0 0 0 0 0 
χ43  0 0 0 0 0 0 
χ44  0 0 0 0 0 0 
χ45  0 0 0 0 0 0 
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Povzetek 
Teorijo grup za netoge molekule v kateri so operacije dinamične simetrije definirane kot fizikalne operacije, smo 
uporabili za določitev tabele karakterjev tertametilena kot popolnoma netoge molekule. Pokazali smo, da to 
molekulo opiše grupa reda 324, katere strukturo določa ciklični product Z3∿(Z2×Z2), kjer je Z3 ciklična grupa 
3. reda in Z2 označuje ciklično grupo 2. reda. Z uporabo paketa programskega paketa za teorijo grup GAP smo 
izračunali konjugirane vrste in tabelo karakterjev te molecule.


